Synthesis and Absolute Configuration of the Naturally Occurring Cyano Glucoside Simmondsin

Noritaka Chida, Ken Yamada and Seiichiro Ogawa*
Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi, Kohoku-ku, Yokohama 223, Japan

Abstract

The synthesis of the naturally occurring cyano glucoside simmondsin, 1, is reported. An optically active cyclitol, L-quebrachitol 2, was stereoselectively converted into the aglycone 19, which was condensed with D-glucose, followed by deprotection to provide simmondsin 1. This synthesis successfully determined the absolute configuration of the natural product.

Simmondsin 1 was first isolated by Elliger et al. in 1973 from seeds of the jojoba plant, Simmondsia californica, and was reported to exhibit feeding inhibitory activity in animals. ${ }^{1}$ The structural study of simmondsin 1 , with spectral analysis and degradation studies, by Elliger's group showed that simmondsin 1 consists of d-glucose bonded to a substituted cyclohexane derivative bearing an α, β-unsaturated nitrile group via a β glycosidic linkage. ${ }^{1.2}$ After the discovery of simmondsin, a number of similar cyano glucosides possessing interesting biological activities, viz. griffonin, ${ }^{3}$ menisdaurin, ${ }^{4}$ lithospermoside ${ }^{5}$ and its epimer, ${ }^{6}$ were isolated from plants. However, in spite of its intriguing structure as well as its unique biological activity, there has been no report of the total synthesis of simmondsin 1 , and the absolute configurations of simmondsin 1 and of other natural products in this class have not been elucidated. In this article we document a total synthesis and absolute structure of simmondsin 1 with full experimental details. ${ }^{7}$

1 Simmondsin

2 L-Quebrachitol
Although the absolute configuration of the aglycone moiety of simmondsin was not clear, the relative structural similarity of the aglycone to the naturally occurring optically active cyclitol L-quebrachitol, compound $2,{ }^{8.9}$ led us to choose compound 2 as the starting material for the synthesis of the aglycone moiety. Thus, four asymmetric centres ($\mathrm{C}-1,-2,-4$ and -6) of compound 2 were envisaged to correlate with C-4, $-5,-1$ and -3 of the aglycone, respectively. The hydroxy group in the known di- O isopropylidene derivative $3,{ }^{9 b}$ prepared in one step from L quebrachitol 2 , was O-methylated to give the fully protected derivative 4 in 96% yield. The trans O-isopropylidene group in compound 4 was selectively cleaved by mild acid hydrolysis to afford the diol 5 , which was treated with an equimolar quantity of benzoyl chloride in pyridine to give two mono-O-benzoyl derivatives in a ratio of $\sim 5: 1$ in 60% yield from compound 4 (Scheme 1).
${ }^{1} \mathrm{H}$ NMR analysis of the major benzoate with spin-spin decoupling revealed that the proton attached to the carbon bearing the benzoyloxy group ($\delta 4.95$) was coupled with $5-\mathrm{H}$ ($\delta 4.51, J_{4.5} 5.3 \mathrm{~Hz}$) and there was observed no coupling between the proton at $\delta 4.95$ and $2-\mathrm{H}(\delta 3.62)$, indicating that the
major benzoate should be 4-O-benzoate 6. Reaction of compound 6 with methanesulfonyl chloride provided mesylate 7 in 83% yield, which was then treated with sodium methoxide to afford the epoxide 8. Lithium aluminium hydride reduction of epoxide 8 afforded the single alcohol 9 in 91% yield. In the ${ }^{1} \mathrm{H}$ NMR spectrum of the alcohol 9 , there was observed no coupling between the signal at $\delta 4.03(5-\mathrm{H})$ and $1-\mathrm{H}(\delta 3.80)$, and the signal at $\delta 4.03$ was coupled with $4-\mathrm{H}(\delta 4.29)$ and the $\mathrm{C}-6$ methylene, supporting the assigned structure of compound 9 . The predominant formation of compound 9 might be rationalized by the presence of a cis- O-isopropylidene group at $\mathrm{C}-5$ and -6 in compound 8, which would not have allowed the approach of the reagent to $\mathrm{C}-1$, due to stereoelectronic effects. The hydroxy group in compound 9 was protected as its p-methoxybenzyl ether to afford compound 10 , whose O-isopropylidene group was removed by acid hydrolysis to provide diol 11 in 75% yield from the alcohol 9. An equatorial hydroxy group in diol 11 was selectively acylated with benzoyl chloride to give monoester $12(87 \%)$. After tetrahydropyranylation of the remaining hydroxy function to give the tetraether 13 , the $4-\mathrm{OH}$ group was regenerated by basic hydrolysis to afford the alcohol 14 in 87% yield from compound 12 . Oxidation of the alcohol 14 with pyridinium chlorochromate (PCC) gave ketone 15 in 87% yield. The crucial cyanomethylenation of ketone 15 was achieved by Horner-Emmons alkenation using diethyl cyanomethylphosphonate and $\mathrm{Bu}^{t} \mathrm{OK}$ in toluene, and the desired acylonitrile 16 E and its Z-isomer 16 Z were isolated in 43 and 37% yield, respectively.
To establish the geometry of the double bonds in products 16 E and 16 Z , they were converted into butenolides 22 and 25 , respectively (Scheme 2). Hence, treatment of isomer 16E with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) in wet dichloromethane ${ }^{10}$ afforded compound 20, whose THP group was removed under acidic conditions to give diol 21. Treatment of diol 21 with aq. acid provided the known butenolide ${ }^{2}$ 22, previously obtained from natural simmondsin by acid hydrolysis, in 11% overall yield from 16E. The physical (m.p. 138$139^{\circ} \mathrm{C}$; lit., ${ }^{2} 138-140^{\circ} \mathrm{C}$) and spectral properties of the butenolide 22 were in good accord with those of an authentic sample ${ }^{2}$ reported by Elliger. On the other hand, removal of THP group in compound 16 Z gave the alcohol 23, which was then treated with DDQ to afford diol 24. Acid treatment of diol 24 generated another butenolide, 25 , in 9% overall yield from 16 Z . The ${ }^{1} \mathrm{H}$ NMR data as well as the mass spectrum (see Experimental section) supported the assigned structure. From these results, the geometries of the double bonds in compounds 16 E and 16 Z were unambiguously determined.

The ${ }^{1} \mathrm{H}$ NMR analysis of compounds having an α, β-unsaturated nitrile function suggested that the conformations of these compounds are strongly influenced by the geometry of the

$3 \mathrm{R}=\mathrm{H}$
$4 \mathrm{R}=\mathrm{Me}$

$5 \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{H}$
$6 R^{1}=H, R^{2}=B z$ $7 R^{1}=M s, R^{2}=B z$

$9 \mathrm{R}=\mathrm{H}$
$10 \mathrm{R}=\mathrm{MPM}$
\qquad

8

$11 R^{1}=R^{2}=H$
$12 R^{1}=B z, R^{2}=H$
$13 \mathrm{R}^{1}=\mathrm{Bz}, \mathrm{R}^{2}=\mathrm{THP}$
$14 R^{1}=H, R^{2}=T H P$

$+$

16E $\mathrm{R}^{1}=\mathrm{MPM}, \mathrm{R}^{2}=\mathrm{THP}$
$17 R^{1}=M P M . R^{2}=H$
$18 R^{1}=M P M, R^{2}=A c$
$19 R^{1}=H, R^{2}=A c$

Scheme $1 \mathrm{Bz}=\mathrm{PhCO}, \mathrm{Ms}=\mathrm{MeSO}_{2}, \mathrm{MPM}=p-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CH}_{2}$, $\mathrm{THP}=$ tetrahydropyran-2-yl, $\mathrm{Ac}=\mathrm{MeCO}$
double bond. Compounds with a trans (to the C-2-C-3 bond) olefin always adopt conformation i whereas those having a cis (to C-2-C-3 bond) olefin adopt conformation ii. In the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 18, for example, $3-\mathrm{H}$ was observed at $\delta 5.96$ as dd ($J_{3.4} 8.8$ and $J_{3 . \text { vinyl }} 1.8 \mathrm{~Hz}$). The large coupling constant between $3-\mathrm{H}$ and $4-\mathrm{H}$ revealed that the acetoxy group at $\mathrm{C}-3$ has an equatorial orientation, and the relatively large long-range coupling between 3-H and the vinyl proton suggested that the $\mathrm{C}-3-\mathrm{H}$ bond is parallel to the π orbital. ${ }^{11}$ The signal of 1-H in compound 18 appeared at $\delta 4.56$ with $J_{1.6} 4.8$ and $J_{1.6} .3 .7 \mathrm{~Hz}$, indicating that $1-\mathrm{H}$ is equatorially oriented, and the lack of coupling between the vinyl proton suggested that the $\mathrm{C}-1-\mathrm{H}$ bond is orthogonal to the π orbital, ${ }^{11}$ supporting our hypothesis that compound 18 adopts conformation i. On the other hand, in the ${ }^{1} \mathrm{H}$ NMR of the compounds having a cis-olefin to $\mathrm{C}-2-\mathrm{C}-3$ bond (compounds

$21 R^{1}=R^{2}=H$

$23 R^{1}=M P M, R^{2}=H$
25

Scheme 2

16Z, 23 and 24), large coupling constants ($\sim 11 \mathrm{~Hz}$) between $1-\mathrm{H}$ and $6-\mathrm{H}$, and long-range couplings ($\sim 2 \mathrm{~Hz}$) between $1-\mathrm{H}$ and the vinyl proton, were observed. These results, as well as the small coupling constants $J_{3.4}<5.2 \mathrm{~Hz}$, and lack of coupling between 3-H and the vinyl protons, suggested the structure ii for these compounds. This significant conformational change between trans- and cis-olefins should probably be ascribed to steric factors. The severe allylic 1,3 strain ${ }^{12}$ between the hydroxy and cyano groups would make conformation i and ii preferable for trans- and cis-olefins, respectively. It is noteworthy that conformation i is stable for trans-olefin compounds in spite of the presence of a 1,3-diaxial interaction of hydroxy functions. It has been reported by Elliger ${ }^{1.2}$ that natural simmondsin also adopts conformation i .

Scheme 3

Removal of the O-THP group in compound 16E to give the alcohol 17, and acetylation gave compound 18 in 97% yield. The MPM protecting group was then removed to provide the aglycone 19, suitable for condensation, in 72% yield. β-Glucosidation of aglycone 19 was successfully achieved by Schmidt's protocol. ${ }^{13}$ Thus, treatment of compound 19 with trichloroacetimidate derivative 26^{14} in the presence of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ and molecular sieves (1,2 -dichloroethane) afforded the β-glucoside 27 in 27% yield (Scheme 3). The Koenigs-Knorr condensation of compound 19 with glucopyranosyl bromides or chlorides with various metal salts as catalysts gave less satisfactory

1
Fig. 1 Absolute configuration of simmondsin 1
results, and the low yield of the condensation might be attributable to the relative instability of substrate 19 towards acidic reaction conditions. The ${ }^{1} \mathrm{H}$ NMR spectrum, as well as the m.p., of product 27 were in good accord with those of an authentic sample, reported by Elliger ${ }^{1}$ [m.p. $164-165^{\circ} \mathrm{C}$ (lit., ${ }^{1}$ $\left.\left.165-166^{\circ} \mathrm{C}\right)\right]$, and the β-glucosidic linkage was confirmed from the ${ }^{1} \mathrm{H}$ NMR data ($J 7.8 \mathrm{~Hz}$ at the anomeric centre). Finally, O-acetyl groups were removed by treatment of compound 27 with sodium methoxide in methanol to provide simmondsin 1, quantitatively. The spectral (${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and IR) and physical properties \{m.p. $\left.94-95^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{24}-69^{*}(\mathrm{MeOH})\right\}$ were in good accord with those of natural simmondsin \{m.p. 98$\left.99^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{25}-73(\mathrm{MeOH})\right\}$. From this synthesis, therefore, the absolute configuration of simmondsin was determined to be (2Z)-($1 R, 3 S, 4 R, 5 S$)-2-cyanomethylene-3-hydroxy-4,5-dimethoxycyclohexyl β-D-glucopyranoside as depicted in Fig. 1.

Experimental

M.p.s were determined on a Mitamura-riken micro hot stage and are uncorrected. ${ }^{1} \mathrm{H}$ NMR spectra were measured with a JEOL JNM EX-90 (90 MHz) and a JEOL JNM-GSX 270 (270 MHz) spectrometer, with tetramethylsilane as internal standard for solutions in deuteriochloroform, unless otherwise noted; J values are given in $\mathrm{Hz} .{ }^{13} \mathrm{C}$ NMR spectra were taken on a JEOL JNM-GSX $270(67 \mathrm{MHz})$ spectrometer with ${ }^{13} \mathrm{CDCl}_{3}$ as internal standard ($\delta_{\mathrm{C}} 77.0 \mathrm{ppm}$) for solutions in deuteriochloroform. High-resolution mass spectra were measured by a JEOL JMS-DX-302 spectrometer with EI mode (70 eV). Optical rotations were measured with a JASCO DIP-370 instrument. IR spectra were taken with a JASCO IR-810 spectrometer. Organic solutions were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated below $40^{\circ} \mathrm{C}$ under reduced pressure. pH Values were measured using pH paper.

1L-3,4:5,6-Di-O-isopropylidene-1,2-di-O-methyl-chiro-inositol \dagger 4.-To a stirred solution of $1 \mathrm{~L}-3,4: 5,6-\mathrm{di}-\mathrm{O}$-isopropyl-idene-2-O-methyl-chiro-inositol $\ddagger \mathbf{3}(35 \mathrm{mg}, 0.13 \mathrm{mmol})$ in N, N dimethylformamide (DMF) $\left(0.6 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ was added 60% sodium hydride ($6.1 \mathrm{mg}, 0.15 \mathrm{mmol}$). After the mixture had been stirred at $0{ }^{\circ} \mathrm{C}$ for 40 min , iodomethane ($0.016 \mathrm{~cm}^{3}, 0.26 \mathrm{mmol}$) was added and the resulting mixture was stirred at room temperature for 30 min . After addition of methanol at $0^{\circ} \mathrm{C}$, the mixture was concentrated, and then diluted with EtOAc. The organic layer was washed with brine, then dried. Evaporation of the solvent left an oil which was chromatographed on a column of silica gel (1 g) with EtOAc-toluene ($1: 10, \mathrm{v} / \mathrm{v}$) as eluent to give compound 4 ($35 \mathrm{mg}, 96 \%$) as a syrup (Found: C, $58.0 ; \mathrm{H}, 8.1$. $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{6}$ requires $\mathrm{C}, 58.3 ; \mathrm{H}, 8.4 \%$); $\left.\alpha\right]_{\mathrm{D}}^{28}-16\left(c 1.0, \mathrm{CHCl}_{3}\right)$;

[^0]$\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.37,1.43,1.44$ and 1.51 (each $3 \mathrm{H}, 4 \mathrm{~s}$, $2 \times \mathrm{CMe}_{2}$), $3.44(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.53$ and 3.54 (each $3 \mathrm{H}, 2 \mathrm{~s}$, $2 \times \mathrm{OMe}), 3.61-3.78(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{and} 4-\mathrm{H}), 3.84(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H})$ and 4.29-4.40 ($2 \mathrm{H}, \mathrm{m}, 5-\mathrm{and} 6-\mathrm{H})$.

1L-5,6-O-Isopropylidene-1,2-di-O-methyl-chiro-inositol§ 5.To a stirred solution of compound $4(26 \mathrm{mg}, 0.088 \mathrm{mmol})$ in methanol $\left(0.5 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$, was added toluene-p-sulfonic acid monohydrate (PTSA) (0.2 mg), and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 7 h . The reaction mixture was then neutralized by addition of triethylamine ($\mathrm{pH} 7 \sim 8$), and was then concentrated to give a residue, which was chromatographed on a column of silica gel $(1 \mathrm{~g})$ with methanol-chloroform $(1: 20)$ as eluent to give compound $5(18 \mathrm{mg}, 81 \%$) as a syrup (Found: C, 52.9; H, 7.9. $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{6}$ requires $\mathrm{C}, 53.2 ; \mathrm{H}, 8.1 \%$); $[\alpha]_{\mathrm{D}}^{28}-68\left(c 1.0, \mathrm{CHCl}_{3}\right)$; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3430(\mathrm{OH}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.37$ and 1.49 (each $3 \mathrm{H}, 2 \mathrm{~s}, \mathrm{CMe}_{2}$), 3.31 ($1 \mathrm{H} \mathrm{br} \mathrm{s}$,OH), 3.33-3.68 ($3 \mathrm{H}, \mathrm{m}, 2-$, 3-, 4-H), 3.53 and 3.57 (each $3 \mathrm{H}, 2 \mathrm{~s}, 2 \times \mathrm{OMe}$), $3.73(1 \mathrm{H}$, br s, $\mathrm{OH}), 3.82\left(1 \mathrm{H}\right.$, dd, $\left.J_{1.2} 2.8, J_{1.6} 3.9,1-\mathrm{H}\right), 4.15\left(1 \mathrm{H}, \mathrm{dd}, J_{4.5} 6.1\right.$, $\left.J_{5.6} 6.1,5-\mathrm{H}\right)$ and $4.34(1 \mathrm{H}, \mathrm{dd}, 6-\mathrm{H})$.

1L-4-O-Benzoyl-5,6-O-isopropylidene-1,2-di-O-methyl-chiroinositol 9 . 6 -To a stirred solution of the diol $5(40 \mathrm{mg}, 0.16$ mmol) in pyridine ($0.6 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$ was added benzoyl chloride ($0.026 \mathrm{~cm}^{3}, 0.23 \mathrm{mmol}$). After the mixture had been stirred at $0^{\circ} \mathrm{C}$ for 27 h , methanol was added and the mixture was concentrated to give a residue, which was dissolved in EtOAc. The organic solution was washed successively with $0.5 \mathrm{~mol} \mathrm{dm}^{-3}$ aq. HCl , saturated aq. sodium hydrogen carbonate, and brine, then dried. Removal of the solvent left a syrup, which was chromatographed on a column of silica gel (1 g) with EtOActoluene ($1: 10$) as eluent to give a $5: 1$ mixture of compound 6 and its regioisomer ($34 \mathrm{mg}, 60 \%$) as a syrup. This compound was used in the next step without further purification. A part of this syrup was further purified with silica gel chromatography and used as an analytical sample (Found: C, $61.15 ; \mathrm{H}, 6.7 . \mathrm{C}_{18}{ }^{-}$ $\mathrm{H}_{24} \mathrm{O}_{7}$ requires $\mathrm{C}, 61.4 ; \mathrm{H}, 6.9 \%$); $[\alpha]_{\mathrm{D}}^{27}-94$ (c $0.9, \mathrm{CHCl}_{3}$); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3470(\mathrm{OH})$ and $1730($ ester $) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}$; CDCl_{3}) 1.39 and 1.53 (each $3 \mathrm{H}, 2 \mathrm{~s}, \mathrm{CMe}_{2}$), 3.50 and 3.56 (each $3 \mathrm{H}, 2 \mathrm{~s}, 2 \times \mathrm{OMe}$), $3.62\left(1 \mathrm{H}, \mathrm{dd}, J_{1.2} 2.4, J_{2.3} 4.9,2-\mathrm{H}\right), 3.83$ (1 $\left.\mathrm{H}, \mathrm{dd}, J_{1.6} 4.9,1-\mathrm{H}\right), 3.95(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.45\left(1 \mathrm{H}, \mathrm{dd}, J_{5.6} 6.4,5-\right.$ $\mathrm{H}), 4.51\left(1 \mathrm{H}, \mathrm{dd}, J_{4.5} 8.3,5-\mathrm{H}\right), 4.95\left(1 \mathrm{H}, \mathrm{dd}, J_{3.4} 7.3,4-\mathrm{H}\right)$ and 7.45-8.13 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$).

1L-4-O-Benzoyl-5,6-O-isopropylidene-1,2-di-O-methyl-3-O-methylsulfonyl-chiro-inositol $|\mid 7$.-To a solution of a 5: 1 mixture of compound 6 and its regioisomer ($29 \mathrm{mg}, 0.083 \mathrm{mmol}$) in pyridine $\left(0.5 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$ was added methanesulfonyl chloride ($0.013 \mathrm{~cm}^{3}, 0.17 \mathrm{mmol}$). After being stirred at room temperature for 6 h , the mixture was treated with methanol and the resulting mixture was concentrated to give a residue. This was diluted with EtOAc and then washed successively with $0.5 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{aq} . \mathrm{HCl}$, saturated aq. sodium hydrogen carbonate, and brine, and dried. Evaporation of the solvent left a crystalline residue, which was purified on preparative TLC (PLC) with ethyl acetate-toluene ($1: 4$) to give pure compound $7(30 \mathrm{mg}, 83 \%$) as needles, m.p. $140.5-141.5^{\circ} \mathrm{C}$ (from EtOH) (Found: C, 52.7; H, 6.05. $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{9} \mathrm{~S}$ requires $\mathrm{C}, 53.0 ; \mathrm{H}, 6.1 \%$); $[\alpha]_{\mathrm{D}}^{27}-46$ (c 0.98 , CHCl_{3}); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1730$ (ester); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.36$ and 1.59 (each $3 \mathrm{H}, 2 \mathrm{~s}, \mathrm{CMe}_{2}$), $2.94\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SO}_{2} \mathrm{Me}\right), 3.56$ and 3.58 (each $3 \mathrm{H}, 2 \mathrm{~s}, 2 \times \mathrm{OMe}$), $3.77\left(1 \mathrm{H}, \mathrm{dd}, J_{1.2} 2.4, J_{2.3} 6.8,2-\right.$ H), $3.94\left(1 \mathrm{H}, \mathrm{dd}, J_{1.6} 3.4,1-\mathrm{H}\right), 4.37-4.44(2 \mathrm{H}, \mathrm{m}, 5-$ and $6-\mathrm{H})$,
§ Systematically: 1L-1,2-O-isopropylidene-5,6-di-O-methyl-chiro-inositol.

- Systematically: 1L-3-O-benzoyl-1,2-di- O-isopropylidene-5,6-di- O -methyl-chiro-inositol.
|| Systematically: 1L-3-O-benzoyl-1,2-O-isopropylidene-5,6-di-O-meth-yl-4-O-methylsulfonyl-chiro-inositol.
$4.98\left(1 \mathrm{H}, \mathrm{dd}, J_{3.4} 8.8,3-\mathrm{H}\right), 5.48\left(1 \mathrm{H}, \mathrm{dd}, J_{4.5} 7.8,4-\mathrm{H}\right)$ and 7.44-8.11 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$).

1D-1,2-Anhydro-5,6-O-isopropylidene-3,4-di-O-methyl-alloinositol 8.-To a stirred solution of the mesyl ester $7(85 \mathrm{mg}, 0.20$ $\mathrm{mmol})$ in methanol $\left(1.5 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ was added $1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ sodium methoxide in methanol $\left(0.30 \mathrm{~cm}^{3} ; 0.30 \mathrm{mmol}\right)$ and the resulting mixture was stirred at room temperature for 3 h . The reaction mixture was neutralized by addition of IR-120B resin (H^{+}-form) and insoluble materials were removed by filtration. The filtrate was concentrated to give a residue, which was diluted with EtOAc. The organic solution was washed successively with saturated aq. sodium hydrogen carbonate and brine, and dried. Removal of the solvent gave a syrup, which was chromatographed on a silica gel column (2 g) with EtOActoluene ($1: 5$) as eluent to afford compound $8(38 \mathrm{mg}, 84 \%)$ as a crystalline residue, m.p. $63-64{ }^{\circ} \mathrm{C}$ (from EtOH) (Found: C, 57.3; $\mathrm{H}, 7.6 . \mathrm{C}_{11} \mathrm{H}_{18} \mathrm{O}_{5}$ requires $\mathrm{C}, 57.4 ; \mathrm{H}, 7.9 \%$); $[\alpha]_{\mathrm{D}}^{27}+30(c 1.0$, CHCl_{3}); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.37$ and 1.45 (each $3 \mathrm{H}, 2 \mathrm{~s}$, CMe_{2}), 3.24 (1 H , dd, $J_{1.2} 2.9, J_{1.5} 1.0,1-\mathrm{H}$), 3.42 (1 H, ddd, $J_{2.3}$ $\left.2.0, J_{2.4} 1.0,2-\mathrm{H}\right), 3.52$ and 3.54 (each $\left.3 \mathrm{H}, 2 \mathrm{~s}, 2 \times \mathrm{OMe}\right), 3.72(1$ H , ddd, $\left.J_{3.4} 4.4, J_{4.5} 4.4,4-\mathrm{H}\right), 3.94(1 \mathrm{H}$, dd, $3-\mathrm{H}), 4.41(1 \mathrm{H}$, ddd, $\left.J_{5.6} 5.9,5-\mathrm{H}\right)$ and $4.55(1 \mathrm{H}, \mathrm{d}, 6-\mathrm{H})$.

1D-(1,2,5/3,4)-3,4-O-Isopropylidene-1,2-di-O-methylcyclohexanepentaol 9.-To a stirred suspension of lithium aluminium hydride ($31 \mathrm{mg}, 0.83 \mathrm{mmol}$) in tetrahydrofuran (THF) $\left(1 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$ was added a solution of the epoxide $8(38 \mathrm{mg}, 0.17 \mathrm{mmol})$ in THF ($1 \mathrm{~cm}^{3}$) dropwise. After the mixture had been stirred at room temperature for 3 h , water was added and the product was extracted with EtOAc. The organic layer was washed with brine and dried. Removal of the solvent left a syrup, which was chromatographed on a silica gel column (1 g), with EtOActoluene (1:2) as eluent, to give compound $9(35 \mathrm{mg}, 91 \%)$ as a syrup (Found: C, $56.6 ; \mathrm{H}, 8.6 . \mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{6}$ requires $\mathrm{C}, 56.9 ; \mathrm{H}$, 8.7%); $[\alpha]_{\mathrm{D}}^{27}+48\left(c 0.97, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3480(\mathrm{OH})$; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.38$ and 1.49 (each $3 \mathrm{H}, 2 \mathrm{~s}, \mathrm{CMe}_{2}$), 1.91 (1 H , ddd, $J_{1.6} 3.4, J_{5.6} 4.9, J_{6.6} \cdot 14.7,6-\mathrm{H}$), $2.09\left(1 \mathrm{H}\right.$, ddd, $J_{1.6} .4 .4$, $\left.J_{5.6}, 4.4,6-\mathrm{H}^{\prime}\right), 3.35\left(1 \mathrm{H}\right.$, dd, $\left.J_{1.2} 2.9, J_{2.3} 6.4,2-\mathrm{H}\right), 3.47$ and 3.53 (each $3 \mathrm{H}, 2 \mathrm{~s}, 2 \times \mathrm{OMe}), 3.80(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 4.03(1 \mathrm{H}$, $\mathrm{m}, 5-\mathrm{H}), 4.29\left(1 \mathrm{H}, \mathrm{dd}, J_{3.4} 5.9, J_{4.5} 4.4,4-\mathrm{H}\right)$ and $4.36(1 \mathrm{H}$, dd, 3-H).

1D-(1,2,5/3,4)-3,4-O-Isopropylidene-5-O-(p-methoxybenzyl)-1,2-di-O-methylcyclohexanepentaol 10.-To a stirred solution of compound $9(18 \mathrm{mg}, 0.066 \mathrm{mmol})$ in DMF $\left(0.5 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ was added 60% sodium hydride $(12 \mathrm{mg}, 0.31 \mathrm{mmol})$. After the mixture had been stirred at $0^{\circ} \mathrm{C}$ for $45 \mathrm{~min}, p$-methoxybenzyl chloride $\left(0.042 \mathrm{~cm}^{3}, 0.31 \mathrm{mmol}\right)$ was added, and the resulting mixture was stirred at room temperature for 12 h before being poured into ice-water and stirred for 1 h , and the product was extracted with EtOAc. The extract was washed successively with saturated aq. sodium hydrogen carbonate and brine, then dried over anhydrous sodium carbonate and sodium sulfate. Removal of the solvent afforded a syrup, which was purified by PLC with acetone-toluene (1:5) to give compound 10 (22 mg , 81%) as a syrup (Found: $\mathrm{C}, 64.5 ; \mathrm{H}, 7.7 . \mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{6}$ requires C , $64.75 ; \mathrm{H}, 8.0 \%$); $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 1610$ (para-substituted phenyl); $\delta_{\mathrm{H}}\left(90 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.37$ and 1.43 (each $3 \mathrm{H}, 2 \mathrm{~s}, \mathrm{CMe}_{2}$), 1.69$2.18\left(2 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}_{2}\right), 3.38(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.42-3.68(3 \mathrm{H}, \mathrm{m}, 1-, 2-$ and $5-\mathrm{H}$), 3.51 and 3.80 (each $3 \mathrm{H}, 2 \mathrm{~s}, 2 \times \mathrm{OMe}), 4.19(1 \mathrm{H}$, dd, $\left.J_{3.4} 6.3, J_{4.5} 6.3,4-\mathrm{H}\right), 4.33\left(1 \mathrm{H}, \mathrm{dd}, J_{2.3} 3.8,3-\mathrm{H}\right), 4.54$ and 4.72 (each $\left.1 \mathrm{H}, 2 \mathrm{~d}, \mathrm{~J} 11.0, \mathrm{ArCH}_{2}\right)$ and 6.79-7.38 (4 H, m, ArH).

1D-(1,2,5/3,4)-5-O-(p-Methoxybenzyl)-1,2-di-O-methylcyclohexanepentaol 11.-A solution of compound $10(89 \mathrm{mg}, 0.25$ mmol) and PTSA ($10 \mathrm{mg}, 0.053 \mathrm{mmol}$) in methanol ($2 \mathrm{~cm}^{3}$) was stirred at room temperature for 4 h . The reaction mixture was
neutralized by addition of triethylamine ($\mathrm{pH} 7 \sim 8$), and was then concentrated to give a residue, which was chromatographed on a silica gel column (3 g), with EtOAc-hexane (2:3) as eluent, to give compound $11(72 \mathrm{mg}, 92 \%$) as a syrup (Found: $\mathrm{C}, 61.1 ; \mathrm{H}$, 7.7. $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{O}_{6}$ requires $\mathrm{C}, 61.5 ; \mathrm{H}, 7.7 \%$); $[\alpha]_{\mathrm{D}}^{27}-65(c 0.87$, CHCl_{3}); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3430(\mathrm{OH})$ and 1610 (para-substituted phenyl); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.71\left(1 \mathrm{H}\right.$, ddd, $J_{1.6} 11.7, J_{5.6} 11.7$, $\left.J_{6.6} \cdot 11.7,6-\mathrm{H}\right), 2.21\left(1 \mathrm{H}\right.$, ddd, $\left.J_{1.6} \cdot 3.9, J_{5.6} \cdot 3.9,6-\mathrm{H}^{\prime}\right), 3.41$ and 3.48 (each $3 \mathrm{H}, 2 \mathrm{~s}, 2 \times \mathrm{OMe})$, $3.52-3.61(2 \mathrm{H}, \mathrm{m}, 1-$ and $5-\mathrm{H})$, $3.71\left(1 \mathrm{H}, \mathrm{dd}, J_{1.2} 3.4, J_{2.3} 3.4,2-\mathrm{H}\right), 3.80(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.81(3 \mathrm{H}$, $\mathrm{s}, \mathrm{OMe}), 4.21\left(1 \mathrm{H}, \mathrm{dd}, J_{3.4} 3.4,3-\mathrm{H}\right), 4.38$ and 4.64 (each $1 \mathrm{H}, 2$ $\mathrm{d}, J 10.7, \mathrm{ArCH}_{2}$) and 6.87-7.30 (4 H, m, ArH).

1D-(1,2,5/3,4)-4-O-Benzoyl-5-O-(p-methoxybenzyl)-1,2-di-Omethylcyclohexanepentaol 12.-To a stirred solution of the diol $11(241 \mathrm{mg}, 0.772 \mathrm{mmol})$ in pyridine ($4 \mathrm{~cm}^{3}$) was added benzoyl chloride ($0.099 \mathrm{~cm}^{3}, 0.85 \mathrm{mmol}$) and the resulting mixture was stirred at $70^{\circ} \mathrm{C}$ for 13 h . After addition of methanol at $0^{\circ} \mathrm{C}$, the reaction mixture was concentrated to give a residue, which was dissolved in EtOAc and washed successively with $1 \mathrm{~mol} \mathrm{dm}^{-3}$ aq. HCl , saturated aq. sodium hydrogen carbonate, and brine, then dried. Removal of the solvent left a syrup, which was chromatographed on a silica gel column (10 g) with EtOAc-toluene ($1: 7$) as eluent, to give benzoate $12(281 \mathrm{mg}, 87 \%)$ as a crystalline residue, m.p. $77-78^{\circ} \mathrm{C}$ (from EtOH) (Found: $\mathrm{C}, 66.4 ; \mathrm{H}, 6.7$. $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{O}_{7}$ requires $\mathrm{C}, 66.3 ; \mathrm{H}, 6.8 \%$); $[\alpha]_{\mathrm{D}}^{27}-47\left(c 1.7, \mathrm{CHCl}_{3}\right)$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3440(\mathrm{OH}), 1710$ (ester) and 1605 (parasubstituted phenyl); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.58(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$, $1.94\left(1 \mathrm{H}\right.$, ddd, $\left.J_{1.6} 11.2, J_{5.6} 11.2, J_{6.6}, 11.2,6-\mathrm{H}\right), 2.21(1 \mathrm{H}, \mathrm{m}$, 6-H'), 3.42 and 3.53 (each $3 \mathrm{H}, 2 \mathrm{~s}, 2 \times$ OMe), $3.67(1 \mathrm{H}$, ddd, $\left.J_{1.2} 3.4, J_{1.6} 3.4,1-\mathrm{H}\right), 3.74\left(1 \mathrm{H}, \mathrm{dd}, J_{2.3} 3.4,2-\mathrm{H}\right), 3.76(3 \mathrm{H}, \mathrm{s}$, OMe), $3.90\left(1 \mathrm{H}\right.$, ddd, $\left.J_{4.5} 9.3, J_{5.6} 4.4,5-\mathrm{H}\right), 4.42\left(1 \mathrm{H}, \mathrm{dd}, J_{3.4}\right.$ $2.9,3-\mathrm{H}), 4.49$ and 4.60 (each $\left.1 \mathrm{H}, 2 \mathrm{~d}, J 11.7, \mathrm{ArCH}_{2}\right), 5.38(1 \mathrm{H}$, dd, 4-H) and 6.74-8.04 (9 H, m, ArH).

1D-(1,2,5/3,4)-4-O-Benzoyl-5-O-(p-methoxybenzyl)-1,2-di-O-methyl-3-O-(tetrahydropyran-2-yl)cyclohexanepentaol 13.-A mixture of compound $12(1.59 \mathrm{~g}, 3.82 \mathrm{mmol})$, 3,4-dihydro- 2 H pyran $\left(1.05 \mathrm{~cm}^{3}, 11.5 \mathrm{mmol}\right)$ and PTSA $(15 \mathrm{mg}, 0.079 \mathrm{mmol})$ in dichloromethane ($20 \mathrm{~cm}^{3}$) was stirred at room temperature for 30 min. After neutralization with triethylamine ($\mathrm{pH} 7 \sim 8$), the reaction mixture was concentrated, and then diluted with EtOAc. The organic solution was washed successively with saturated aq. sodium hydrogen carbonate and brine, and dried. Removal of the solvent left a residue, which was chromatographed on a silica gel column (60 g) with EtOAc -toluene $(1: 8)$ to give compound $13(1.87 \mathrm{~g}, 98 \%$) as a syrup (Found: C, 66.8; H, 7.2. $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{O}_{8}$ requires $\mathrm{C}, 67.2 ; \mathrm{H}, 7.25 \%$); $[\alpha]_{\mathrm{D}}^{26}-53$ (c 1.1, CHCl_{3}); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1720$ (ester) and 1610 (para-substituted phenyl); $\delta_{\mathrm{H}}\left(90 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.33-1.71(4 \mathrm{H}, \mathrm{m}, 2$ methylenes of THP), 1.73-2.42 (4 H, m, methylene of THP and $6-\mathrm{H}_{2}$), 3.30$4.08\left(5 \mathrm{H}, \mathrm{m}, 1-, 2-\right.$ and $5-\mathrm{H}$, and OCH_{2} of THP), $3.41,3.54$ and 3.77 (each $3 \mathrm{H}, 3 \mathrm{~s}, 3 \times \mathrm{OMe}), 4.40\left(1 \mathrm{H}, \mathrm{dd}, J_{2.3} 4.3, J_{3.4} 3.3\right.$, 3$\mathrm{H}), 4.50-4.66\left(3 \mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2}\right.$ and -OCHO- of THP), $5.36(1 \mathrm{H}$, dd, $\left.J_{4.5} 9.8,4-\mathrm{H}\right)$ and $6.67-8.13(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

1D-(1,2,5/3,4)-5-O-(p-Methoxybenzyl)-1,2-di-O-methyl-3-O-(tetrahydropyran-2-yl)cyclohexanepentaol 14.-To a stirred solution of compound $13(1.61 \mathrm{~g}, 3.22 \mathrm{mmol})$ in methanol (25 cm^{3}) at room temperature was added $1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ sodium methoxide in methanol $\left(6.44 \mathrm{~cm}^{3}, 6.44 \mathrm{mmol}\right)$. After being stirred at $50^{\circ} \mathrm{C}$ for 9 h , the reaction mixture was neutralized with resin (pH 7 ; IR 120B, H^{+}-form) and the insoluble materials were removed by filtration. The filtrate was concentrated to give a residue, which was chromatographed on a silica gel column (40 g) with EtOAc-toluene $(1: 3)$ as eluent, to give compound 14 ($1.13 \mathrm{~g}, 89 \%$) as a syrup (Found: $\mathrm{C}, 63.7 ; \mathrm{H}, 7.85 . \mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{7}$ requires $\mathrm{C}, 63.6 ; \mathrm{H}, 8.1 \%$); $[\alpha]_{\mathrm{D}}^{27}-20$ (c $1.9, \mathrm{CHCl}_{3}$);
$v_{\max }($ neat $) / \mathrm{cm}^{-1} 3450(\mathrm{OH})$ and 1610 (para-substituted phenyl); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.48-1.58(4 \mathrm{H}, \mathrm{m}, 2$ methylenes of THP), 1.63-1.82 ($3 \mathrm{H}, \mathrm{m}$, methylene of THP and 6-H), $2.22(1 \mathrm{H}, \mathrm{m}, 6-$ H^{\prime}), 3.40 and 3.48 (each $3 \mathrm{H}, 2 \mathrm{~s}, 2 \times \mathrm{OMe}$), $3.51-3.84(5 \mathrm{H}, \mathrm{m}$, $1-, 2-, 5-\mathrm{H}$, and OCH_{2} of THP), $3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.18-4.66$ (4 $\mathrm{H}, \mathrm{m}, \mathrm{ArCH}_{2}$ and $\left.3-\mathrm{and} 4-\mathrm{H}\right), 4.82(1 \mathrm{H}, \mathrm{m},-\mathrm{OCHO}-$ of THP $)$ and $6.85-7.34(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

2D-(2/3,4,6)-6-O-(p-Methoxybenzyl)-3,4-di-O-methyl-2-O-(tetrahydropyran-2-yl)-2,3,4,6-tetrahydroxycyclohexanone 15.-To a stirred suspension of PCC $(3.07 \mathrm{~g}, 14.3 \mathrm{mmol})$ and molecular sieves $4 \AA$ (powder, 3.0 g) in dichloromethane (30 cm^{3}) at $0^{\circ} \mathrm{C}$ was added a solution of compound $14(1.13 \mathrm{~g}, 2.85$ mmol) in dichloromethane ($10 \mathrm{~cm}^{3}$) dropwise. After being stirred at room temperature for 6 h , the reaction mixture was partially concentrated and chromatographed on a silica gel column (60 g), with diethyl ether as eluent, to give the ketone 15 $\left(973 \mathrm{mg}, 87 \%\right.$) as a syrup (Found: C, 63.9; H, 7.4. $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{7}$ requires $\mathrm{C}, 63.9 ; \mathrm{H}, 7.7 \%$); $[\alpha]_{\mathrm{D}}^{26}+68\left(c 0.58, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}-$ (neat) $/ \mathrm{cm}^{-1} 1740(\mathrm{C}=\mathrm{O})$ and 1610 (para-substituted phenyl); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.45-1.82(6 \mathrm{H}, \mathrm{m}, 3$ methylenes of THP), 2.04-2.37 ($2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}_{2}$), 3.38-4.78 ($9 \mathrm{H}, \mathrm{m}, 2-, 3-, 4-, 6-\mathrm{H}$, ArCH_{2}, and OCH_{2} and -OCHO - of THP), 3.43, 3.47 and 3.80 (each $3 \mathrm{H}, 3 \mathrm{~s}, 3 \times \mathrm{OMe}$) and 6.82-7.38(4 H, m, ArH).
(2E)-(1R,3S,4S,5S)-2-Cyanomethylene-4,5-dimethoxy-1-(p-methoxybenzyloxy)-3-(tetrahydropyran-2-yloxy)cyclohexane
16E and its 2Z-Isomer 16Z.-To a stirred solution of ketone 15 ($992 \mathrm{mg}, 2.51 \mathrm{mmol}$) and diethyl cyanomethylphosphonate ($2.03 \mathrm{~cm}^{3}, 12.5 \mathrm{mmol}$) in toluene ($15 \mathrm{~cm}^{3}$) under Ar was added potassium tert-butoxide ($704 \mathrm{mg}, 6.28 \mathrm{mmol}$), and the resulting mixture was stirred at room temperature for 6 h . The reaction mixture was then diluted with EtOAc, washed with brine, and dried. Removal of the solvent left a residue, which was chromatographed on a silica gel column (25 g) with EtOActoluene (1:12) as eluent to give, first, compound 16 Z (388 mg , 37%) as a syrup (Found: C, 66.0; H, 7.4; N, 3.5. $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{NO}_{6}$ requires C, 66.2; $\mathrm{H}, 7.5 ; \mathrm{N}, 3.35 \%$); $[\alpha]_{\mathrm{D}}^{27}-36\left(c 0.25, \mathrm{CHCl}_{3}\right)$; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 2210(\mathrm{CN})$ and 1610 (para-substituted phenyl); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.45-1.63(5 \mathrm{H}, \mathrm{m}, 2$ methylenes of THP and 6-H), 1.66-1.80 ($2 \mathrm{H}, \mathrm{m}$, methylene of THP), $2.33(1 \mathrm{H}$, ddd, $J_{1.6}, 5.2, J_{5.6}, 4.8, J_{6.6}, 11.4,6-\mathrm{H}^{\prime}$), 3.41 and 3.52 (each $3 \mathrm{H}, 2 \mathrm{~s}$, $2 \times \mathrm{OMe}), 3.53(1 \mathrm{H}, \mathrm{m}, 4-\mathrm{H}), 3.54(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}$ of THP), 3.68 (1 H , ddd, $J_{4.5} 3.3, J_{5.6} 12.1,5-\mathrm{H}$), $3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.91(1 \mathrm{H}$, m, OCH of THP), 4.10 (1 H , ddd, $J_{1.6} 11.9, J_{1 . v i n y l} 2.4,1-\mathrm{H}$), 4.40 $1 \mathrm{H}, \mathrm{m},-\mathrm{OCHO}$ - of THP), 4.46 and 4.59 (each $1 \mathrm{H}, 2 \mathrm{~d}, J 11.7$, $\left.\mathrm{ArCH}_{2}\right), 5.11\left(1 \mathrm{H}, \mathrm{d}, J_{3.4} 3.4,3-\mathrm{H}\right), 5.82(1 \mathrm{H}, \mathrm{d}$, vinyl) and $6.86-$ 7.25 ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

The second fraction gave regioisomer 16 E ($451 \mathrm{mg}, 43 \%$) as a syrup (Found: C, 66.0; H, 7.45; N, 3.3\%); [$\alpha]_{\mathrm{D}}^{23}-28$ (c 0.92, CHCl_{3}); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 2180(\mathrm{CN})$ and 1630 (para-substituted phenyl); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ 1.44-1.64 $(5 \mathrm{H}, \mathrm{m}, 2$ methylenes of THP and 6-H), 1.73-1.84 ($2 \mathrm{H}, \mathrm{m}$, methylene of THP), $2.50(1$ H , ddd, $\left.J_{1.6} .3 .4, J_{5.6^{\prime}} 3.4, J_{6.6}, 15.6,6-\mathrm{H}^{\prime}\right), 3.13\left(1 \mathrm{H}, \mathrm{dd}, J_{3.4} 9.3\right.$, $\left.J_{4.5} 3.4,4-\mathrm{H}\right), 3.41(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.44(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}$ of THP), $3.48(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.74$ ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), $3.80(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.83$ (1 $\mathrm{H}, \mathrm{m}, \mathrm{OCH}$ of THP), 4.33 and 4.52 (each $1 \mathrm{H}, 2 \mathrm{~d}, J 11.7$, $\left.\mathrm{ArCH}_{2}\right), 4.64\left(1 \mathrm{H}, \mathrm{dd}, J_{1.6} 3.4,1-\mathrm{H}\right), 4.82(1 \mathrm{H}, \mathrm{m},-\mathrm{OCHO}-$ of THP), $4.83(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 5.88\left(1 \mathrm{H}, \mathrm{d}, J_{3 . v i n y 1} 1.5\right.$, vinyl) and 6.83-7.30 ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).
(2Z)-(1R,3S,4R,5S)-2-Cyanomethylene-3-hydroxy-4,5-dimeth-oxy-1-(p-methoxybenzyloxy)cyclohexane 17.-A mixture of compound 16E ($46 \mathrm{mg}, 0.11 \mathrm{mmol}$) and pyridinium toluene-psulfonate (PPTS) (3 mg) in ethanol ($1 \mathrm{~cm}^{3}$) was stirred at $50^{\circ} \mathrm{C}$ for 4 h . After addition of triethylamine, the mixture was concentrated to give a residue, which was chromatographed on a silica gel column (1 g) with EtOAc-toluene ($1: 3$) as eluent to
give compound 17 ($36 \mathrm{mg}, 97 \%$) as a syrup (Found: M^{+}, 333.1560. $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{5}$ requires $M, 333.1576$); $[\alpha]_{\mathrm{D}}^{26}-12$ (c 1.1, $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 3380(\mathrm{OH}), 2180(\mathrm{CN})$, and 1630 (para-substituted phenyl); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.46(1 \mathrm{H}, \mathrm{m}$, $6-\mathrm{H}), 1.65(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.64\left(1 \mathrm{H}, \mathrm{ddd}, J_{1.6^{\prime}} 2.6, J_{5.6^{\prime}} 2.9, J_{6.6^{\prime}}\right.$ $\left.16.1,6-\mathrm{H}^{\prime}\right), 2.99\left(1 \mathrm{H}, \mathrm{dd}, J_{3.4} 10.3, J_{4.5} 2.9,4-\mathrm{H}\right.$), 3.44, 3.48 and 3.80 (each $3 \mathrm{H}, 3 \mathrm{~s}, 3 \times \mathrm{OMe}$), $3.93\left(1 \mathrm{H}, \mathrm{ddd}, J_{5.6} 2.9,5-\mathrm{H}\right.$), 4.36 and 4.50 (each $\left.1 \mathrm{H}, 2 \mathrm{~d}, \mathrm{~J} 11.4, \mathrm{ArCH}_{2}\right), 4.67\left(1 \mathrm{H}, \mathrm{dd}, J_{1.6} 3.7\right.$, $1-\mathrm{H}), 4.87\left(1 \mathrm{H}, \mathrm{dd}, J_{3 . v i n y 1} 2.2,3-\mathrm{H}\right), 5.84(1 \mathrm{H}, \mathrm{d}$, vinyl) and $6.84-$ 7.29 ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).
(2E)-(1R,3S,4S,5S)-3-Acetoxy-2-cyanomethylene-4,5-dimeth-oxy-1-(p-methoxybenzyloxy)cyclohexane 18.-A mixture of compound $17(8.9 \mathrm{mg}, 0.027 \mathrm{mmol})$ and acetic anhydride (0.5 cm^{3}) in pyridine ($0.5 \mathrm{~cm}^{3}$) was stirred at room temperature for 2 h. After addition of methanol, the mixture was concentrated to give a residue, which was chromatographed on a silica gel column (1 g) with EtOAc-toluene ($1: 3$) as eluent to give acetate $18(10.8 \mathrm{mg}, 100 \%)$ as a crystalline residue, m.p. $70-73^{\circ} \mathrm{C}$ (from EtOH) (Found: C, 63.6; H, 6.65; N, 3.85. $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NO}_{6}$ requires $\mathrm{C}, 64.0 ; \mathrm{H}, 6.7 ; \mathrm{N}, 3.7 \%$); $[\alpha]_{\mathrm{D}}^{22}-2\left(c \quad 0.54, \mathrm{CHCl}_{3}\right)$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2150(\mathrm{CN}), 1780(\mathrm{C}=\mathrm{O})$ and 1650 (parasubstituted phenyl); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.63\left(1 \mathrm{H}\right.$, ddd, $J_{1.6}$ 3.7, $\left.J_{5.6} 3.7, J_{6.6} \cdot 15.0,6-\mathrm{H}\right), 2.15(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.46(1 \mathrm{H}$, ddd, $\left.J_{1.6} \cdot 4.8, J_{5.6} \cdot 4.8,6-\mathrm{H}^{\prime}\right), 3.28\left(1 \mathrm{H}, \mathrm{dd}, J_{3.4} 8.8, J_{4.5} 2.9,4-\mathrm{H}\right), 3.42$, 3.47 and 3.80 (each $3 \mathrm{H}, 3 \mathrm{~s}, 3 \times \mathrm{OMe}$), 3.82 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$), 4.35 $(1 \mathrm{H}, \mathrm{d}, J 11.4, \mathrm{ArCHH}), 4.56(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 4.60(1 \mathrm{H}, \mathrm{d}, J 11.4$, $\operatorname{ArCH} H), 5.47\left(1 \mathrm{H}, \mathrm{d}, J_{3 . v i n y 1} 1.8\right.$, vinyl), $5.96(1 \mathrm{H}, \mathrm{dd}, 3-\mathrm{H})$ and $6.88-7.32$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).
(2E)-(1R,3S,4S,5S)-3-Acetoxy-2-cyanomethylene-1-hydroxy-4,5-dimethoxycyclohexane 19.-To a stirred mixture of compound $18(164 \mathrm{mg}, 0.438 \mathrm{mmol})$ in dichloromethane $\left(12 \mathrm{~cm}^{3}\right)$ water ($1.5 \mathrm{~cm}^{3}$) was added DDQ ($149 \mathrm{mg}, 0.657 \mathrm{mmol}$), and the mixture was stirred at room temperature for 18 h . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with water, and dried. Removal of the solvent left a residue, which was chromatographed on a silica gel column (5 g) with EtOActoluene (1:6) as eluent to afford compound 19 ($80.2 \mathrm{mg}, 72 \%$) as a syrup (Found: C, 56.2; H, 6.6; N, 5.4. $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{5}$ requires C, $56.5 ; \mathrm{H}, 6.7 ; \mathrm{N}, 5.5 \%) ;[\alpha]_{\mathrm{D}}^{18}-9\left(c 0.35, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}\left(\mathrm{neat}^{1}\right) / \mathrm{cm}^{-1}$ $3400(\mathrm{OH}), 2160(\mathrm{CN})$ and $1780(\mathrm{C}=0) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $1.60\left(1 \mathrm{H}\right.$, ddd, $\left.J_{1.6} 2.9, J_{5.6} 2.9, J_{6.6} .15 .1,6-\mathrm{H}\right), 2.19(3 \mathrm{H}, \mathrm{s}$, OAc), $2.48\left(1 \mathrm{H}\right.$, ddd, $\left.J_{1.6} \cdot 3.4, J_{5.6^{\prime}} 3.4,6-\mathrm{H}^{\prime}\right), 3.17\left(1 \mathrm{H}\right.$, dd, $J_{3.4}$ $9.8, J_{4.5} 2.7,4-\mathrm{H}$), 3.46 and 3.59 (each $3 \mathrm{H}, 2 \mathrm{~s}, 2 \times \mathrm{OMe}$), 4.01 (1 $\mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.23\left(1 \mathrm{H}, \mathrm{d}, J_{1 . \mathrm{OH}} 9.8, \mathrm{OH}\right), 4.92(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 5.32$ $\left(1 \mathrm{H}, \mathrm{d}, J_{3, v i n y 1} 2.0\right.$, vinyl) and $6.15\left(1 \mathrm{H}, \mathrm{dd}, J_{3.4} 9.8,3-\mathrm{H}\right) ; \delta_{\mathrm{c}}(67$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) $20.7,32.9,58.7,59.8,69.2,70.2,77.4,84.7,93.7$, 115.1, 161.5 and 169.0
(2E)-(1R,3S,4S,5S)-2-Cyanomethylene-1-hydroxy-4,5-dimeth-oxy-3-(tetrahydropyran-2-yloxy)cyclohexane 20.-To a stirred mixture of compound $16 \mathrm{E}(5.5 \mathrm{mg}, 0.013 \mathrm{mmol})$ in dichloromethane ($0.9 \mathrm{~cm}^{3}$)-water ($0.05 \mathrm{~cm}^{3}$) was added DDQ $(6.0 \mathrm{mg}$, $0.026 \mathrm{mmol})$, and the mixture was stirred at room temperature for 6 h . The reaction mixture was diluted with EtOAc and washed successively with saturated aq. sodium thiosulfate, saturated aq. sodium hydrogen carbonate, and brine, and dried. Removal of the solvent left a residue, which was chromatographed on a silica gel column (0.5 g) with EtOAc-toluene (1:6) as eluent to afford compound 20 ($2.9 \mathrm{mg}, 74 \%$) as a syrup (Found: M^{+}, 297.1570. $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{5}$ requires $M, 297.1576$); $[\alpha]_{\mathrm{D}}^{18}-22\left(c 1.2, \mathrm{CHCl}_{3}\right) ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 3480(\mathrm{OH})$ and 2160 $(\mathrm{CN}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.49-1.65(5 \mathrm{H}, \mathrm{m}, 2$ methylenes of THP and 6-H), 1.79-1.85 ($2 \mathrm{H}, \mathrm{m}$, methylene of THP), $2.47(1 \mathrm{H}$, ddd, $J_{1.6}$ 3.3, $J_{5.6} .3 .3, J_{6.6} \cdot 15.4,6-\mathrm{H}^{\prime}$), 3.08 (1 H , dd, $J_{3.4} 9.9, J_{4.5}$ $2.9,4-\mathrm{H}), 3.49(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.52(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}$ of THP), $3.56(3$ $\mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.81(1 \mathrm{H}, \mathrm{m}, \mathrm{OCH}$ of THP), $3.95(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H})$,
$4.19\left(1 \mathrm{H}, \mathrm{d}, J_{1 . \mathrm{oH}} 9.9, \mathrm{OH}\right), 4.86\left(1 \mathrm{H}, \mathrm{dd}, J_{3 . v i n y 1} 2.2,3-\mathrm{H}\right), 4.91$ $(1 \mathrm{H}, \mathrm{m},-\mathrm{OCHO}-$ of THP $), 4.95(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H})$ and $5.78(1 \mathrm{H}, \mathrm{d}$, vinyl).
(2E)-(1R,3S,4R,5S)-2-Cyanomethylene-1,3-dihydroxy-4,5-dimethoxycyclohexane 21.-A mixture of compound 20 (18 mg , $0.061 \mathrm{mmol})$ and PPTS (2 mg) in ethanol ($1 \mathrm{~cm}^{3}$) was stirred at $55^{\circ} \mathrm{C}$ for 6 h . After addition of triethylamine, the mixture was concentrated to give a residue, which was chromatographed on a silica gel column (1 g) with EtOAc-toluene (1:4) as eluent to give diol 21 ($8.1 \mathrm{mg}, 62 \%$) as a syrup (Found: $\mathrm{M}^{+}, 213.1012$. $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{5}$ requires $M, 213.1001$); $[\alpha]_{\mathrm{D}}^{23}+13\left(c 0.55, \mathrm{CHCl}_{3}\right)$; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3380(\mathrm{OH})$ and $2180(\mathrm{CN}) ; \delta_{\mathrm{H}}(270 \mathrm{MHz} ;$ $\left.\mathrm{CDCl}_{3}\right) 1.55\left(1 \mathrm{H}\right.$, ddd, $\left.J_{1.6} 2.9, J_{5.6} 2.9, J_{6.6} \cdot 15.6,6-\mathrm{H}\right), 2.51(1$ H , ddd, $\left.J_{1.6} 2.9, J_{5.6} \cdot 2.9,6-\mathrm{H}^{\prime}\right), 2.83$ ($1 \mathrm{H}, \mathrm{d}, J_{3.0 \mathrm{OH}} 2.0,3-\mathrm{OH}$), $2.99\left(1 \mathrm{H}, \mathrm{dd}, J_{3.4} 9.8, J_{4.5} 2.9,4-\mathrm{H}\right), 3.52$ and 3.57 (each $3 \mathrm{H}, 3 \mathrm{~s}$, $2 \times \mathrm{OMe}), 4.03(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.08\left(1 \mathrm{H}, \mathrm{d}, J_{1 . \mathrm{OH}} 9.8,1-\mathrm{OH}\right)$, $4.84\left(1 \mathrm{H}\right.$, ddd, $\left.J_{3 . v i n y 1} 2.0,3-\mathrm{H}\right), 4.91(1 \mathrm{H}, \mathrm{ddd}, 1-\mathrm{H})$ and $5.67(1$ H, d, vinyl).
(2S,3R,4S,6R)-2-Hydroxy-3,4-dimethoxy-7-oxabicyclo-[4.3.0]non-1(9)-en-8-one 22.-A mixture of the diol 21 (19.5 $\mathrm{mg}, 0.092 \mathrm{mmol})$ in THF $\left(1.5 \mathrm{~cm}^{3}\right)$-aq. $1 \mathrm{~mol} \mathrm{dm}{ }^{-3} \mathrm{HCl}\left(0.5 \mathrm{~cm}^{3}\right)$ was heated at $55^{\circ} \mathrm{C}$ for 5 h . The mixture was then poured into ice-water and then extracted three times with EtOAc. The combined extracts were washed successively with saturated aq. sodium hydrogen carbonate and brine, and dried. Removal of the solvent left a residue, which was chromatographed on a silica gel column (1 g) with acetone-toluene ($1: 5$) as eluent to afford lactone $22(4.6 \mathrm{mg}, 24 \%$) as a crystalline residue, m.p. $138-139{ }^{\circ} \mathrm{C}$ (from benzene) (lit., ${ }^{2} 138-140^{\circ} \mathrm{C}$) (Found: C, 56.1; H, 6.6. Calc. for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{5}: \mathrm{C}, 56.1 ; \mathrm{H}, 6.6 \%$); $[\alpha]_{\mathrm{D}}^{22}-168(c 0.1$, $\left.\mathrm{CHCl}_{3}\right) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3410(\mathrm{OH})$ and $1750(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(270$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.74\left(1 \mathrm{H}\right.$, ddd, $\left.J_{4.5} 11.2, J_{5.6} 11.2, J_{5.5}, 11.2,5-\mathrm{H}\right)$, $2.16\left(1 \mathrm{H}, \mathrm{d}, J_{2 . \mathrm{OH}} 2.9, \mathrm{OH}\right), 2.62\left(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}^{\prime}\right), 3.44$ and 3.49 (each $3 \mathrm{H}, 2 \mathrm{~s}, 2 \times \mathrm{OMe}$), 3.77-3.87 ($2 \mathrm{H}, \mathrm{m}, 3-$ and 4-H), 4.91 (1 $\left.\mathrm{H}, \mathrm{dd}, J_{2.3} 2.9,2-\mathrm{H}\right), 5.09\left(1 \mathrm{H}\right.$, ddd, $\left.J_{5^{\prime} .6} 6.3, J_{6.9} 1.5,6-\mathrm{H}\right)$ and 5.98 ($1 \mathrm{H}, \mathrm{d}, 9-\mathrm{H}$).
(2E)-(1R,3S,4R,5S)-2-Cyanomethylene-3-hydroxy-4,5-di-methoxy-1-(p-methoxybenzyloxy)cyclohexane 23.-A mixture of compound $16 \mathrm{Z}(115 \mathrm{mg}, 0.275 \mathrm{mmol})$ and PPTS $(10 \mathrm{mg})$ in ethanol ($2 \mathrm{~cm}^{3}$) was stirred at $50^{\circ} \mathrm{C}$ for 25 h . After addition of triethylamine, the mixture was concentrated to give a residue, which was chromatographed on a silica gel column (1 g) with EtOAc-toluene (1:5) as eluent to give compound 23 (66 mg , 71%) as a syrup (Found: C, 64.6; $\mathrm{H}, 6.9$; $\mathrm{N}, 4.1 . \mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{5}$ requires $\mathrm{C}, 64.85 ; \mathrm{H}, 6.95 ; \mathrm{N}, 4.2 \%$); $[\alpha]_{\mathrm{D}}^{27}-13\left(c 0.78, \mathrm{CHCl}_{3}\right)$; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3440(\mathrm{OH}), 2220(\mathrm{CN})$ and 1610 (parasubstituted phenyl); $\delta_{\mathrm{H}}\left(90 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.84(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 2.31$ ($1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}^{\prime}$), 3.41 and 3.52 (each $3 \mathrm{H}, 2 \mathrm{~s}, 2 \times \mathrm{OMe}$), 3.61-3.88 $(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{and} 5-\mathrm{H}), 3.82(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.30\left(1 \mathrm{H}\right.$, ddd, $J_{1.6} 11.0$, $J_{1.6} .5 .1, J_{1 . v i n y 1} 2.1,1-\mathrm{H}$), 4.45 and 4.61 (each $1 \mathrm{H}, 2 \mathrm{~d}, J 10.4$, $\left.\operatorname{ArCH})_{2}\right), 5.08\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{3.4} 3.6,3-\mathrm{H}\right), 5.72(1 \mathrm{H}, \mathrm{d}$, vinyl) and $6.78-$ 7.32 ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).
(2Z)-(1R,3S,4R,5S)-2-Cyanomethylene-1,3-dihydroxy-4,5-dimethoxycyclohexane 24.-To a stirred mixture of compound $23(132.5 \mathrm{mg}, 0.397 \mathrm{mmol})$ in dichloromethane ($9 \mathrm{~cm}^{3}$)-water (1 cm^{3}) was added DDQ ($90.2 \mathrm{mg}, 0.397 \mathrm{mmol}$), and the mixture was stirred at room temperature for 32 h . The reaction mixture was diluted with EtOAc and washed successively with saturated aq. sodium thiosulfate, saturated aq. sodium hydrogen carbonate, and brine, and dried. Removal of the solvent left a residue, which was chromatographed on a silica gel column (3 g) with acetone-toluene ($1: 3$) as eluent to afford diol 24 ($68 \mathrm{mg}, 80 \%$) as a syrup (Found: C, $56.05 ; \mathrm{H}, 6.9 ; \mathrm{N}, 6.5 . \mathrm{C}_{10} \mathrm{H}_{15} \mathrm{NO}_{4}$ requires C , $56.3 ; \mathrm{H}, 7.1 ; \mathrm{N}, 6.6 \%) ;[\alpha]_{\mathrm{D}}^{27}-55\left(c 1.1, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$
$3410(\mathrm{OH})$ and $2220(\mathrm{CN}) ; \delta_{\mathrm{H}}\left(90 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.82-2.58(2 \mathrm{H}$, $\mathrm{m}, 6-\mathrm{H}_{2}$), 3.46 and 3.53 (each $3 \mathrm{H}, 2 \mathrm{~s}, 2 \times \mathrm{OMe}$), $3.63(1 \mathrm{H}, \mathrm{dd}$, $J_{3.4} 5.2, J_{4.5} 2.7,4-\mathrm{H}$), $3.86\left(1 \mathrm{H}, \mathrm{ddd}, J_{5.6} 4.5, J_{5.6} \cdot 9.2,5-\mathrm{H}\right), 4.54$ $(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 5.08(1 \mathrm{H}, \mathrm{d}, 3-\mathrm{H})$ and $5.69\left(1 \mathrm{H}, \mathrm{d}, J_{1 . \text { viny } 1} 2.0\right.$, vinyl).
(2R,4S)-2-Hydroxy-4-methoxy-7-oxabicyclo[4.3.0]nona-
1(9),5-dien-8-one 25.-A mixture of the diol 24 ($25 \mathrm{mg}, 0.12$ mmol) in THF ($1.5 \mathrm{~cm}^{3}$)-aq. $1 \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{HCl}\left(0.5 \mathrm{~cm}^{3}\right)$ was heated at $55^{\circ} \mathrm{C}$ for 10 h . The mixture was poured into ice-water and then extracted three times with EtOAc. The combined extracts were washed successively with saturated aq. sodium hydrogen carbonate and brine, and dried. Removal of the solvent left a residue, which was chromatographed on a silica gel column (1 g) with acetone-toluene ($1: 6$) as eluent to afford lactone 25 ($3.4 \mathrm{mg}, 16 \%$) as a syrup (Found: $\mathrm{M}^{+}, 182.0586$. $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4}$ requires $M, 182.0579$); $[\alpha]_{\mathrm{D}}^{26}-117$ (c $0.27, \mathrm{CHCl}_{3}$); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3400(\mathrm{OH})$ and $1770(\mathrm{C}=0) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 2.12\left(1 \mathrm{H}, \mathrm{ddd}, J_{2.3} 7.8, J_{3.4} 6.8, J_{3.3} .13 .2,3-\mathrm{H}\right), 2.32(1 \mathrm{H}$, ddd, $\left.J_{2.3^{\prime}} 3.9, J_{3^{\prime} .4} 3.9,3-\mathrm{H}^{\prime}\right), 3.46(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 4.26(1 \mathrm{H}, \mathrm{ddd}$, $\left.J_{4.5} 3.9,4-\mathrm{H}\right), 4.74(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 6.03\left(1 \mathrm{H}, \mathrm{dd}, J_{5.9} 2.0,5-\mathrm{H}\right)$ and $6.12(1 \mathrm{H}, \mathrm{m}, 9-\mathrm{H})$.
(2E)-(1R,3S,4S,5S)-3-Acetoxy-2-cyanomethylene-4,5-dimethoxycyclohexyl $\quad 2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}-$ Tetra-O-acetyl- β-D-glucopyranoside (Simmondsin Penta-O-acetate) 27.-To a stirred mixture of compound 19 ($11.8 \mathrm{mg}, 0.0462 \mathrm{mmol}$), 2,3,4,6-tetra- O-acetyl- $\alpha-$ D-glucopyranosyl trichloroacetimidate ${ }^{14} 26(31.9 \mathrm{mg}, 0.0647$ $\mathrm{mmol})$, and molecular sieves $4 \AA(20 \mathrm{mg})$ in 1,2-dichloroethane $\left(0.5 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$ under Ar was added $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}\left(0.006 \mathrm{~cm}^{3}\right.$, 0.023 mmol). After being stirred at $0^{\circ} \mathrm{C}$ for 20 min , the reaction mixture was quenched by addition of saturated aq. sodium hydrogen carbonate. The product was extracted with dichloromethane, washed with brine, and dried. Removal of the solvent afforded a residue, which was chromatographed on a silica gel column (1 g) with acetone-hexane ($1: 4$) as eluent to give the glycoside $27(7.2 \mathrm{mg}, 27 \%)$ as a crystalline residue, m.p. $164-165^{\circ} \mathrm{C}$ [from ethyl acetate-hexane (1:1)] (lit., ${ }^{1}$ 165$166^{\circ} \mathrm{C}$) (Found: C, 53.3; H, 5.9; N, 2.4. Calc. for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{NO}_{14}$: $\mathrm{C}, 53.3 ; \mathrm{H}, 6.0 ; \mathrm{N}, 2.4 \%$); $[\alpha]_{\mathrm{D}}^{22}-24$ (c $0.39, \mathrm{CHCl}_{3}$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 2220(\mathrm{CN})$ and $1760(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(270 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.62\left(1 \mathrm{H}, \mathrm{ddd}, J_{1.6 \mathrm{a}} 4.4, J_{5.6 \mathrm{a}} 4.4, J_{6 \mathrm{a} .6 \mathrm{~b}} 15.1,6-\mathrm{H}^{\mathrm{a}}\right), 2.00$, 2.02, 2.04, 2.08 and 2.14 (each $3 \mathrm{H}, 5 \mathrm{~s}, 5 \times \mathrm{OAc}$), $2.44(1 \mathrm{H}$, ddd, $J_{1.6 \mathrm{~b}} 4.4, J_{5.6 \mathrm{~b}} 4.4,6-\mathrm{H}^{\mathrm{b}}$), $3.20\left(1 \mathrm{H}, \mathrm{dd}, J_{3.4} 9.3, J_{4.5} 3.4,4-\mathrm{H}\right.$), 3.35 and 3.42 (each $3 \mathrm{H}, 2 \mathrm{~s}, 2 \times \mathrm{OMe}$), $3.66\left(1 \mathrm{H}\right.$, ddd, $J_{4} \cdot 5^{\prime} \cdot 9.8$, $\left.J_{5^{\prime} \cdot 6^{\prime} \mathrm{a}} 2.4, J_{5^{\prime} .6^{\prime} \mathrm{b}} 3.9,5^{\prime}-\mathrm{H}\right), 3.81(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.03(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{6^{\prime} .6^{\prime} \mathrm{b}} 12.2,6^{\prime}-\mathrm{H}^{\mathrm{b}}\right), 4.25\left(1 \mathrm{H}, \mathrm{dd}, 6^{\prime}-\mathrm{H}^{\mathrm{a}}\right), 4.70\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime} .2^{\prime}}, 7.8\right.$, $\left.1^{\prime}-\mathrm{H}\right)$, $4.79(1 \mathrm{H}, \mathrm{dd}, 1-\mathrm{H}), 5.04-5.23\left(3 \mathrm{H}, \mathrm{m}, 2^{\prime}-3^{\prime}-\right.$ and $\left.4^{\prime}-\mathrm{H}\right)$, $5.43\left(1 \mathrm{H}, \mathrm{d}, J_{3 . v i n y 1} 2.0\right.$, vinyl) and $6.03(1 \mathrm{H}, \mathrm{dd}, 3-\mathrm{H}) ; \delta_{\mathrm{C}}(67$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 20.6 (3 C), 20.7 (2 C), 30.7, 56.7, 58.4, 61.3, 68.2, $70.8,71.0,72.1,72.9,74.3,75.8,82.7,95.9,101.0,115.6,159.5$, 168.4, 168.9, 169.3, 170.3 and 170.7.
(2Z)-(1R,3S,4R,5S)-2-(Cyanomethylene)-3-hydroxy-4,5-dimethoxycyclohexyl β-D-Glucopyranoside (Simmondsin) 1.-To a stirred solution of simmondsin penta- O-acetate $27(4.5 \mathrm{mg}$, 0.0077 mmol) in methanol ($0.5 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$ was added 1 mol dm^{-3} sodium methoxide in methanol $\left(0.0077 \mathrm{~cm}^{3}, 0.0077 \mathrm{mmol}\right)$, and the resulting solution was stirred at $0^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was neutralized by addition of resin (ph 7; IR$120 \mathrm{~B}, \mathrm{H}^{+}$-form), and the resin was removed by filtration. Removal of the solvent left a syrup, which was chromatographed on a silica gel column (1 g) with methanol-EtOAc (1:10) as eluent to provide compound $1(3.2 \mathrm{mg}$, quantitatively) as a crystalline residue, m.p. $94-95^{\circ} \mathrm{C}$ [from methanol-acetone (1:1)] (natural product $98-99^{\circ} \mathrm{C}$; lit., ${ }^{1} 95-100^{\circ} \mathrm{C}$) (Found: C, $49.9 ; \mathrm{H}, 6.6 ; \mathrm{N}, 3.5$. Calc. for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}_{9} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 50.0 ; \mathrm{H}, 6.8$; $\mathrm{N}, 3.6 \%) ;[\alpha]_{\mathrm{D}}^{24}-69(c 0.57, \mathrm{MeOH})\left[\right.$ natural product, $[\alpha]_{\mathrm{D}}^{25}-73$ (c 0.86, MeOH)]; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3410(\mathrm{OH})$ and $2220(\mathrm{CN})$;
$\left.\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ;{ }^{2} \mathrm{H}_{4}\right] \mathrm{MeOH}\right) 1.69\left(1 \mathrm{H}\right.$, ddd, $J_{1.6 \mathrm{a}} 3.9, J_{5.6 \mathrm{a}} 3.9$, $\left.J_{6 \mathrm{a} .6 \mathrm{~b}} 15.1,6-\mathrm{H}^{\mathrm{a}}\right), 2.51\left(1 \mathrm{H}\right.$, ddd, $\left.J_{1.6 \mathrm{~b}} 3.9, J_{5.6 \mathrm{~b}} 3.9,6-\mathrm{H}^{\mathrm{b}}\right), 3.14(1$ $\left.\mathrm{H}, \mathrm{dd}, J_{3.4} 9.3, J_{4.5} 2.9,4-\mathrm{H}\right), 3.20-3.39\left(4 \mathrm{H}, \mathrm{m}, 2^{\prime}-, 3^{\prime}-4^{\prime}\right.$ - and $5^{\prime}-$ H), 3.45 and 3.47 (each $3 \mathrm{H}, 2 \mathrm{~s}, 2 \times \mathrm{OMe}$), $3.65\left(1 \mathrm{H}, \mathrm{dd}, J_{5^{\prime} .6^{\prime} \mathrm{a}}\right.$ $\left.6.1, J_{6^{\prime}, 6^{\prime} \mathrm{b}} 12.2,6^{\prime}-\mathrm{H}^{\mathrm{a}}\right), 3.83\left(1 \mathrm{H}, \mathrm{dd}, J_{5^{\prime}, 6^{\prime} \mathrm{b}} 2.0,6^{\prime}-\mathrm{H}^{\mathrm{b}}\right), 3.91$ $(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.38\left(1 \mathrm{H}, \mathrm{d}, J_{1^{\prime} \cdot 2^{\prime}} 7.3,1^{\prime}-\mathrm{H}\right), 4.73(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{3 . v i n y 1} 2.0,3-\mathrm{H}\right), 4.88(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H})$ and $5.70\left(1 \mathrm{H}, \mathrm{d}\right.$, vinyl); $\delta_{\mathrm{c}}(67$ MHz ; $\left.\left.{ }^{2} \mathrm{H}_{4}\right] \mathrm{MeOH}\right) 32.0,58.1,58.5,62.7,70.2,71.3,74.7,76.4$, $76.7,78.1,86.3,95.2,104.0,117.5$ and 166.4.

Acknowledgements

We express our sincere thanks to Dr. Carl A. Elliger (US Department of Agriculture, California, USA) for the generous gift of natural simmondsin. Financial support from Yokohama Rubber Co. Ltd. (Tokyo, Japan) is gratefully acknowledged.

References

1 C. A. Elliger, A. C. Waiss, Jr. and R. E. Lundin, J. Chem. Soc., Perkin Trans. 1, 1973, 2209.
2 C. A. Elliger, A. C. Waiss, Jr. and R. E. Lundin, J. Org. Chem., 1974, 39, 2930.
3 D. Dwuma-Badu, W. H. Watson, E. M. Gopalakrishna, T. U. Okarter, J. E. Knapp, P. L. Schiff, Jr. and D. J. Slatkin, Lloydia, 1976, 39, 213.
4 K. Takahashi, M. Matsuzawa and M. Takani, Chem. Pharm. Bull., 1978, 26, 1677.
5 A. Sosa, F. Winternitz, R. Wylde and A. A. Pavia, Phytochemistry, 1977, 16, 707.
6 K. Ueda, K. Yasutomi and I. Mori, Chem. Lett., 1983, 149.

7 N. Chida, K. Yamada and S. Ogawa, J. Chem. Soc., Chem. Commun., 1991, 588
8 J. van Alphen, Ind. Eng. Chem., 1951, 43, 141; N. Chida, M. Suzuki, M. Suwama and S. Ogawa, J. Carbohydr. Chem., 1989, 8, 319.
9 Utilization of L-quebrachitol in organic syntheses, see (a) S. J. Angyal and R. M. Hoskinson, Methods Carbohydr. Chem., 1963, 2, 87; (b) H. Paulsen and F. R. Heiker, Liebigs Ann. Chem., 1981, 2180; (c) T. Akiyama, N. Takechi and S. Ozaki, Tetrahedron Lett., 1990, 31, 1433; T. Akiyama, H. Nishimoto and S. Ozaki, Tetrahedron Lett., 1990, 31, 1335; T. Akiyama, N. Takechi, H. Shima and S. Ozaki, Chem. Lett., 1990, 1881; W. Tegge and C. E. Ballou, Proc. Natl. Acad. Sci. USA, 1989, 86, 94; A. P. Kozikowski, A. H. Fauq, I. A. Aksoy, M. J. Seewald and G. Powis, J. Am. Chem. Soc., 1990, 112, 7403; A. P. Kozikowski, A. H. Fauq, G. Powis and D. C. Meilder, J. Am. Chem. Soc., 1990, 112, 4528; T. Akiyama, H. Shima and S. Ozaki, Tetrahedron Lett., 1991, 32, 5593; T. Akiyama, M. Ohnari, H. Shima and S. Ozaki, Synlett, 1991, 831; N. Chida, T. Tobe, M. Suwama, M. Ohtsuka and S. Ogawa, J. Chem. Soc., Chem. Commun., 1990, 994; N. Chida, T. Tobe and S. Ogawa, Tetrahedron Lett., 1991, 32, 1063; S. Ogawa and A. Isaka, Carbohydr. Res., 1991, 210, 105.
10 K. Horita, T. Yoshioka, T. Tanaka, Y. Oikawa and O. Yonemitsu, Tetrahedron, 1986, 42, 3021.
11 J. B. Lambert, H. F. Shurvell, D. A. Lightner and R. G. Cooks, Introduction to Organic Spectroscopy, Macmillan, New York, 1987, pp. 79-81.
12 F. Johnson, Chem. Rev., 1968, 68, 325.
13 R. R. Schmidt and J. Michel, Angew. Chem., Int. Ed. Engl., 1980, 19, 731.

14 S. J. Cook, R. Khan and J. M. Brown, J. Carbohydr. Chem., 1984, 3, 343.

Received 30th December 1991
Accepted 22nd January 1992

[^0]: * Units for $[x]_{\mathrm{D}}$ are now $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$.
 + Systematically: 1L-1,2:3,4-di- O-isopropylidene-5,6-di-O-methyl-chiroinositol.
 \ddagger Systematically: $1 \mathrm{~L}-1,2: 3,4-\mathrm{di}$ - O-isopropylidene-5-O-methyl-chiro-inositol.

